skip to main content


Search for: All records

Creators/Authors contains: "Windham-Myers, Lisamarie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Process‐based land surface models are important tools for estimating global wetland methane (CH4) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven wetland models at 23 eddy covariance tower sites. Our study first characterizes site‐level patterns of freshwater wetland CH4fluxes (FCH4) at different time scales. A Monte Carlo approach was developed to incorporate flux observation error to avoid misidentification of the time scales that dominate model error. Our results suggest that (a) significant model‐observation disagreements are mainly at multi‐day time scales (<15 days); (b) most of the models can capture the CH4variability at monthly and seasonal time scales (>32 days) for the boreal and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and (d) differences in error pattern are related to model structure (e.g., proxy of CH4production). Our evaluation suggests the need to accurately replicate FCH4variability, especially at short time scales, in future wetland CH4model developments.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  2. Abstract Tidal wetlands provide myriad ecosystem services across local to global scales. With their uncertain vulnerability or resilience to rising sea levels, there is a need for mapping flooding drivers and vulnerability proxies for these ecosystems at a national scale. However, tidal wetlands in the conterminous USA are diverse with differing elevation gradients, and tidal amplitudes, making broad geographic comparisons difficult. To address this, a national-scale map of relative tidal elevation ( Z * MHW ), a physical metric that normalizes elevation to tidal amplitude at mean high water (MHW), was constructed for the first time at 30 × 30-m resolution spanning the conterminous USA. Contrary to two study hypotheses, watershed-level median Z * MHW and its variability generally increased from north to south as a function of tidal amplitude and relative sea-level rise. These trends were also observed in a reanalysis of ground elevation data from the Pacific Coast by Janousek et al. (Estuaries and Coasts 42 (1): 85–98, 2019). Supporting a third hypothesis, propagated uncertainty in Z * MHW increased from north to south as light detection and ranging (LiDAR) errors had an outsized effect under narrowing tidal amplitudes. The drivers of Z * MHW and its variability are difficult to determine because several potential causal variables are correlated with latitude, but future studies could investigate highest astronomical tide and diurnal high tide inequality as drivers of median Z * MHW and Z * MHW variability, respectively. Watersheds of the Gulf Coast often had propagated Z * MHW uncertainty greater than the tidal amplitude itself emphasizing the diminished practicality of applying Z * MHW as a flooding proxy to microtidal wetlands. Future studies could focus on validating and improving these physical map products and using them for synoptic modeling of tidal wetland carbon dynamics and sea-level rise vulnerability analyses. 
    more » « less
  3. Coastal marshes, mangroves, and seagrass sequester significant amounts of “blue carbon” in soils, sediments, and biomass. They have potential as a negative emissions technology. With the increasing policy focus on climate change mitigation, we need to understand and accurately predict wetland carbon processes. Complex interactions of climate, land use, sea level, nitrogen pollution, and human management regulate the strength of the carbon sink and the greenhouse gas balance (including CO2, CH4, and N2O). Our ability to measure and model vertical and lateral exchanges, as well as the soil and sediment processes, at the land-ocean interface is limited. We aim to bring together researchers from various disciplines to discuss coastal carbon and nitrogen pools and fluxes, and their roles in global biogeochemical cycling and climate change mitigation. We also aim to report advances in eddy flux, lateral flux, field experiments, remote sensing, modeling, and synthesis that support coastal wetland carbon accounting. 
    more » « less
  4. Coastal marshes, mangroves, and seagrass sequester significant amounts of “blue carbon” in soils, sediments, and biomass. They have potential as a negative emissions technology. With the increasing policy focus on climate change mitigation, we need to understand and accurately predict wetland carbon processes. Complex interactions of climate, land use, sea level, nitrogen pollution, and human management regulate the strength of the carbon sink and the greenhouse gas balance (including CO2, CH4, and N2O). Our ability to measure and model vertical and lateral exchanges, as well as the soil and sediment processes, at the land-ocean interface is limited. We aim to bring together researchers from various disciplines to discuss coastal carbon and nitrogen pools and fluxes, and their roles in global biogeochemical cycling and climate change mitigation. We also aim to report advances in eddy flux, lateral flux, field experiments, remote sensing, modeling, and synthesis that support coastal wetland carbon accounting. 
    more » « less
  5. Abstract

    Wetlands are responsible for 20%–31% of global methane (CH4) emissions and account for a large source of uncertainty in the global CH4budget. Data‐driven upscaling of CH4fluxes from eddy covariance measurements can provide new and independent bottom‐up estimates of wetland CH4emissions. Here, we develop a six‐predictor random forest upscaling model (UpCH4), trained on 119 site‐years of eddy covariance CH4flux data from 43 freshwater wetland sites in the FLUXNET‐CH4 Community Product. Network patterns in site‐level annual means and mean seasonal cycles of CH4fluxes were reproduced accurately in tundra, boreal, and temperate regions (Nash‐Sutcliffe Efficiency ∼0.52–0.63 and 0.53). UpCH4 estimated annual global wetland CH4emissions of 146 ± 43 TgCH4 y−1for 2001–2018 which agrees closely with current bottom‐up land surface models (102–181 TgCH4 y−1) and overlaps with top‐down atmospheric inversion models (155–200 TgCH4 y−1). However, UpCH4 diverged from both types of models in the spatial pattern and seasonal dynamics of tropical wetland emissions. We conclude that upscaling of eddy covariance CH4fluxes has the potential to produce realistic extra‐tropical wetland CH4emissions estimates which will improve with more flux data. To reduce uncertainty in upscaled estimates, researchers could prioritize new wetland flux sites along humid‐to‐arid tropical climate gradients, from major rainforest basins (Congo, Amazon, and SE Asia), into monsoon (Bangladesh and India) and savannah regions (African Sahel) and be paired with improved knowledge of wetland extent seasonal dynamics in these regions. The monthly wetland methane products gridded at 0.25° from UpCH4 are available via ORNL DAAC (https://doi.org/10.3334/ORNLDAAC/2253).

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  6. null (Ed.)
  7. Abstract

    Quantifying carbon fluxes into and out of coastal soils is critical to meeting greenhouse gas reduction and coastal resiliency goals. Numerous ‘blue carbon’ studies have generated, or benefitted from, synthetic datasets. However, the community those efforts inspired does not have a centralized, standardized database of disaggregated data used to estimate carbon stocks and fluxes. In this paper, we describe a data structure designed to standardize data reporting, maximize reuse, and maintain a chain of credit from synthesis to original source. We introduce version 1.0.0. of the Coastal Carbon Library, a global database of 6723 soil profiles representing blue carbon‐storing systems including marshes, mangroves, tidal freshwater forests, and seagrasses. We also present the Coastal Carbon Atlas, an R‐shiny application that can be used to visualize, query, and download portions of the Coastal Carbon Library. The majority (4815) of entries in the database can be used for carbon stock assessments without the need for interpolating missing soil variables, 533 are available for estimating carbon burial rate, and 326 are useful for fitting dynamic soil formation models. Organic matter density significantly varied by habitat with tidal freshwater forests having the highest density, and seagrasses having the lowest. Future work could involve expansion of the synthesis to include more deep stock assessments, increasing the representation of data outside of the U.S., and increasing the amount of data available for mangroves and seagrasses, especially carbon burial rate data. We present proposed best practices for blue carbon data including an emphasis on disaggregation, data publication, dataset documentation, and use of standardized vocabulary and templates whenever appropriate. To conclude, the Coastal Carbon Library and Atlas serve as a general example of a grassroots F.A.I.R. (Findable, Accessible, Interoperable, and Reusable) data effort demonstrating how data producers can coordinate to develop tools relevant to policy and decision‐making.

     
    more » « less